
1

Virtual Timers: Using Hardware Physical
Timers for Profiling Kernel Code-Paths

Dimitrios Xinidis†, Michail D. Flouris, and Angelos Bilas†

Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

P.O. Box 1385, Heraklion, GR 71110, Greece

Email: {dxinid, flouris, bilas}@ics.forth.gr

Abstract—
When evaluating the performance of commercial work-

loads it is important to be able to examine overheads induced
by the operating system kernel. Currently the only method
for understanding kernel overheads is by using sample-based
profiling tools. Although profiling can be very useful, one of
its main limitations is that it does not allow the precise pro-
filing of specific code-paths. Using hardware timers with a
simple API allows addressing this issue, however, does not
deal with context switch operations that incur during code
execution, due to synchronous or asynchronous events.

In this work we propose a new interface for virtualizing
physical timers. Our interface takes into account context
switches and provides the system programmer with simple
calls to profile specific code-paths. We implement this API
in the Linux kernel and demonstrate how it can be used to
profile the system overhead of MySQL running a subset of
TPC-H over iSCSI. Using our virtual timers we identify the
time is spent in I/O related code-paths in the kernel with little
effort. We also examine the overhead of the instrumentation
code and find that it is less than 3% of the execution time in
all experiments we perform.

I. INTRODUCTION

Profiling kernel overheads for commercial applications

is an important part of understanding overall system bottle-

necks. For instance, most application I/O operations cur-

rently pass through the kernel, since I/O protocols stacks

are almost entirely implemented in the kernel.

†Also, with the Department of Computer Science, University of
Crete, P.O. Box 2208, Heraklion, GR 71409, Greece.

Current tools for profiling kernel code are mostly based

on sampling techniques [3], [10], [2]. Sampling-based

profilers, periodically sample the program counter of the

system and use available symbol information to associate

each sample with a specific function in the executable file.

Then, the total execution time is divided to the various ker-

nel functions based on the number of samples that were

accounted to each function during the sampling phase.

Sampling profilers can thus operate transparently, with-

out requiring system or application code instrumentation,

but only access to symbol information. However, sam-

pling profilers have also important limitations that make

them unsuitable for profiling certain aspects of kernel over-

heads.

First, with a sampling profiler it is impossible to distin-

guish in which code-path a specific function is called. For

instance, if a specific function is called in several code-

paths (i.e. sequences of function calls), the time spent in

this function will appear as a single statistic in the profil-

ing results. Thus with sampling profiling we are not able to

attribute this overhead to different code-paths that happen

to call this function. Furthermore, it is sometimes impor-

tant to measure the latency of specific operations. Sam-

pling profilers can only provide approximations to latency

calculations by combining them with a frequency counter

that allows conversion of overall statistics reported by the

profiler to per-instance averages. However, in many cases

higher precision measurements are necessary, especially

when profiling low latency operations in the kernel. Fi-

nally, when symbol information is not available for parts of

2

#samples % app name symbol name

#
183251 50.1147 mysqld (no symbols)

28151 7.6986 vmlinux file_read_actor

19084 5.2190 vmlinux csum_partial_copy_generic
14651 4.0067 dl2k.o rio_interrupt

11955 3.2694 vmlinux __generic_copy_to_user

11849 3.2404 vmlinux csum_partial
6738 1.8427 dl2k.o start_xmit

6730 1.8405 vmlinux schedule

4860 1.3291 vmlinux eth_type_trans
4627 1.2654 vmlinux kmem_cache_free_one

3091 0.8453 dl2k.o receive_packet

2230 0.6099 vmlinux UTM_STOP
1914 0.5234 vmlinux tcp_v4_rcv

1821 0.4980 vmlinux tcp_rcv_established

1764 0.4824 vmlinux UTM_START
1589 0.4346 vmlinux __kmem_cache_alloc

1500 0.4102 vmlinux IRQ0x11_interrupt

1421 0.3886 vmlinux tcp_transmit_skb
1384 0.3785 vmlinux tcp_recvmsg

1345 0.3678 vmlinux stop_active_timers

1327 0.3629 vmlinux start_active_timers
1211 0.3312 vmlinux kfree

1203 0.3290 vmlinux default_idle

1161 0.3175 vmlinux kfree_skbmem
1061 0.2902 vmlinux __make_request

1029 0.2814 intel_iscsi.o iscsi_sock_msg

972 0.2658 vmlinux tcp_v4_checksum_init
841 0.2300 vmlinux alloc_skb

835 0.2284 vmlinux rmqueue

817 0.2234 vmlinux do_generic_file_read
794 0.2171 intel_iscsi.o param_equiv

Fig. 1. Example of Oprofile symbol sampling output

the code, interpreting profiling results may either be com-

plicated or even impossible.

As a specific example, consider profiling MySQL [12]

for kernel storage I/O overheads, e.g. using a networked

storage subsystem over iSCSI [9]. A sampling profiler

provides a detailed list of sampled kernel symbols, show-

ing how much time the kernel spends in each symbol, as

shown in Figure 1. However, these samples cannot be used

to construct a hierarchical breakdown for different kernel

layers, because there are many common functions used

throughout the kernel. For example, page alloc()

is used to allocate a memory page. This function is

used in various kernel components, including the file sys-

tem, the SCSI and iSCSI layers, the TCP/IP stack, and

various drivers, such as NIC and disk drivers. Know-

ing that the kernel spends a specific amount of time in

page alloc() does not allow us to provide a detailed

breakdown of the kernel time in the various layers of the

I/O protocol stack.

To address this issue, we examine how traditional hard-

ware timers can be used to profile specific code-paths in

the kernel. Conceptually, the required operations are fairly

simple. We need the ability to start and stop a high-

accuracy timer at specific points during code execution.

The main problem with using stop-watch timers arises

from the fact that many code-paths in the kernel include

waiting on various events. If a timer has been started and

the execution includes a wait on some system event that

will result in a context switch, e.g. receiving a packet or

completing an I/O request, then the resulting measurement

may not be precise. The high frequency of event waits,

context switches, and asynchronous interrupts when exe-

cuting kernel code, limits the usefulness of simple stop-

watch timers.

To address these issues, we examine and propose exten-

sions to physical timer interfaces that provide stop-watch

virtual timers and simplify profiling of kernel code-paths.

We clarify the various possibilities and implement the pro-

posed API in Linux. We deal with synchronous and asyn-

chronous scheduler and interrupt events transparently to

tasks. Thus, the programmer is only required to insert ap-

propriate start/stop calls at the boundaries of the code that

needs to be profiled, without worrying about events that

occur in between.

To demonstrate the effectiveness of our approach we

show how it can be used to profile the system overhead

of MySQL running TPC-H over iSCSI. Compared to tra-

ditional physical timers, our approach requires an order of

magnitude less effort. Finally, we measure the execution

time overhead of the Virtual Timers and find that it is less

than 3% of the execution time in all experiments we per-

form.

The rest of the paper is organized as follows. Section II

discusses the problem and the proposed timer API. Sec-

tion III discusses our Linux implementation providing all

necessary background about Linux scheduling and inter-

rupts. Section IV demonstrates how our approach simpli-

fies profiling of kernel code-paths and discusses the instru-

mentation overheads it incurs. Finally, Section VI draws

our conclusions.

3

inline long long GetCurrentCycles(void) {

LARGE_INTEGER val;

__asm__ __volatile__("rdtsc ":

"=a" (val.split.LowPart),
"=d"(val.split.HighPart));

return val.QuadPart ;
}

Fig. 2. Function for reading cycle counter in the x86 architecture.

II. TIMER SEMANTICS AND API

Most CPUs today provide cycle counters that can be

used for profiling purposes. For instance the x86 archi-

tecture provides a 64-bit cycle counter that can usually be

read with a single assembly instruction. Figure 2 shows

how this is achieved in the x86 architecture, by inlining

assembly in a C function (this is gcc-compatible code).

This assembly instruction reads the value of a processor

register that counts clock cycles since the last boot of the

system. Clock cycles are a very accurate measure of time

for most purposes. Moreover, this profiling method incurs

very low overhead, requiring a single assembly instruction

to read the cycle counter. In contrast, using OS facilities

such as do gettimeofday() that use the system real-

time clock have two main disadvantages: (i) They need

several instructions to compute the time and thus, incur

high overhead. (ii) The granularity they provide is in the

order of milliseconds, while cycle counters can potentially

measure nanosecond intervals on modern high-frequency

processors.

A generic stop-watch timer has essentially five prim-

itive operations: alloc/dealloc(), start(),

stop(), clear() and read time(). alloc()

creates a new timer. start() starts counting time by

reading the current timer value and storing it. stop()

reads the current timer value, subtracts from it the

previously-stored timer value and stores their difference.

This difference indicates the time elapsed between the

start and stop points. The timer can then be restarted

and stopped, accumulating the total time for all intervals.

read time() returns the current total, i.e. the elapsed

time. clear() resets the total time measured by the

timer. Finally, when the timer is not needed, we can free it

using dealloc().

int alloc (_timer_ctx_t *tc,char *name,char flag);

int dealloc (int timer_id, _timer_ctx_t *tc);
void start (int timer_id, _timer_ctx_t *tc);

void stop (int timer_id, _timer_ctx_t *tc);

void clear (int timer_id, _timer_ctx_t *tc);

Fig. 3. Virtual timers API.

Using the above timer concepts, profiling a code-

path requires merely including the path in a pair of

start timer(), stop timer() calls. Using mul-

tiple timers, allows us to measure independent code-paths.

This simple profiling approach, however, becomes more

complicated when applied to modern operating systems,

mainly because of two features: (a) multi-tasking and pre-

emption and (b) interrupts.

Modern operating systems try to minimize blocking and

wait time by overlapping execution of concurrent kernel

and user tasks as much as possible. For this reason they

switch between tasks whenever a task needs to wait on an

event. Processes are placed in various event queues and

the operating system scheduler selects the next process to

run on the CPU. Since stop-watch timers use physical time

between the start and stop operations, any measurement

of elapsed time will include all time between these two

points, i.e. the time other processes may have run on the

CPU. A similar situation occurs with interrupts (software

or hardware) that are issued during the run time of a pro-

cess. In this case the interrupt handler routine will be in-

cluded in the time of the specific code-path.

To deal with these issues in a transparent manner, our

framework offers two kinds of timers: physical and virtual.

• Physical timers that measure all time between start

and stop operations.

• Virtual Virtual timers automatically remove all wait

and interrupt times.

Furthermore, each type of timer can be categorized as

private or global:

• Global timers are visible from all tasks. Such timers

can be started and stopped by any task running in the

system.

• Private timers are visible only inside the context of a

single task and cannot be accessed by other tasks.

Thus we can have the following combinations of timer

semantics:

4

• Physical-Global: These timers are the simplest

timers, traditionally available for profiling.

• Physical-Private: These timers are useful when a task

needs to profile other activity, e.g. wait time that oc-

curs during its execution.

• Virtual-Private: This type of timer can be used to

profile paths in a single task without interfering with

other system or user tasks.

• Virtual-Global: These timers do not provide useful

semantics, since virtual timers make sense only in the

context of a single task.

Out of the three combinations of timer semantics,

the most challenging to provide is virtual-private. Sup-

porting virtual-private timer semantics requires two ad-

ditional internal functions that are not part of the

traditional stop-watch timer API: pseudo start(),

pseudo stop(). These functions are called either

from the scheduler or from interrupt handlers in order to

start/stop active timers of a task during a scheduling or in-

terrupt event. Thus, these are not calls that would be used

when profiling code, but are rather internal calls used in

the operating system.

III. TIMER IMPLEMENTATION

In this section we describe our implementation of virtual

timers for Linux.

First, we describe the Linux scheduler, for kernel ver-

sions up to 2.4.x [7]. Linux uses separate contexts for enti-

ties that can be scheduled independently. Such entities are

called tasks. A task may be a user process, a kernel thread,

or a signal. Interrupts are distinguished from tasks and

run in their own context. All user tasks are preemptible.

The scheduler may suspend the execution of the current

user process at any time and select another process to run,

according to a scheduling algorithm. On the other hand,

all kernel tasks are non-preemptible (in the 2.6.x kernel

they are preemptible). However, kernel tasks may yield

the CPU to improve responsiveness when waiting for I/O

to complete [7].

Figure 5 shows the scheduler pseudo-code. Initially, the

scheduler checks the state of the current task. If the state

is set to TASK INTERRUPTIBLE, the scheduler checks

if there are signals that may require processing. If there

are no such signals, the task is removed from the queue

of runnable tasks. In both cases, the flag that indicates if

the task needs to be rescheduled, is disabled. After the

scheduler has applied the scheduling algorithm to all tasks

in the runnable queue, it selects the most suitable task to

run or the idle task if the queue is empty. At this point,

it is guaranteed that the selected task will run. The context

switch merely saves the context of the previous task and

restores the context of the task to run.

To implement virtual timers we need to: (i)

pseudo stop all timers of the previously running

task that were active when the scheduler run and (ii)

pseudo start the timers of the task that will run next

and that were active when the process was preempted. For

this we need a bitmap per task indicating the task’s active

timers. The bits in this bitmap are set when the timer is

started and are reset when the timer is stopped by the user

in the task code.

Next we describe how we deal with interrupts. When an

interrupt occurs the task that holds the CPU is suspended

and a general interrupt handling routine is called [1], as

shown in Figure 4. After the completion of the interrupt

there are two possibilities: (i) If the task that was inter-

rupted is a user task, the scheduler is called and selects a

task to run. (ii) If the task is a kernel task, the control of the

CPU returns to this task. Consider, for example, that a task

T1 uses the CPU. When an interrupt arrives, the OS saves

the context of T1 in the top-most interrupt handler and

calls the do IRQ function, which is the entry point of all

interrupts. do IRQ calls other functions, including the in-

terrupt handler of the specific interrupt. After the interrupt

is handled, the OS decides which task should be scheduled

next, based on the reschedule flag of the interrupted task.

To deal with interrupts we instrument the generic interrupt

handler of the Linux kernel. Similarly to the scheduler, in

the beginning of this function we pseudo stop the ac-

tive timers of the interrupted task. When the interrupt rou-

tine is completed we pseudo start the active timers

of the next task to run. We note that we could avoid the

pseudo start operation in the case where the sched-

uler is called, however we prefer to include it because it is

easier to implement in the current Linux code.

A case that needs special handling arises with nested

interrupts. In this case and during a nested interrupt,

we will pseudo stop the active timers of the previous

5

IRQ

Save registers

do_IRQ

Restore registers

Kernel task User task

of interrupted

of interrupted

Restore registers
of interrupted

Scheduler:
choose a task

to run

3

4
task

task

task t1

handle_IRQ

soft_irq

stop_active_timers(t1);

start_active_timers(t1);

2

1

3.1

3.2

3.3

3.4

4

5Kernel task continues
its execution

Fig. 4. Generic interrupt execution path in Linux.

task. However in a nested interrupt, the previous task is

the task that was originally interrupted and not the pre-

vious interrupt context. Since pseudo stop accumu-

lates the current timer difference, this will lead to multi-

ple accumulation of a single time difference. For this rea-

son pseudo stop checks if a particular active timer has

been pseudo-stopped already. Similarly pseudo start

checks if the timer is already pseudo-started. Thus, our

implementation stops and starts virtual timers only at top-

level interrupts. We measure the frequency of nested in-

terrupts during our experiments and we find that they ac-

count for less than 4% of the total pseudo start,

pseudo stop calls.

Finally, another scenario that requires special handling

is the case where an interrupt occurs while the sched-

uler itself is running, and the virtual timers framework has

pseudo-started the active timers of the next task to run and

we are just before the actual context switch. In this case

execution is still in the context of the current task but the

framework has started the timers of the next task to run.

As mentioned previously, the virtual timers code in the in-

terrupt handler will stop the active timers of the task that

schedule() {

need_resched_back:

prev = current;

if ((prev->state == TASK_INTERRUPTIBLE)
&& signal_pending())

prev->state = TASK_RUNNING;

else
del_from_runqueue (prev);

repeat_schedule:
next = idle_task ();

search_list();

/* c is the goodness value. The biggest the

more likely for a process to run next. If
it is 0 the process cannot run on the CPU

that has used until now. */

if (c == 0) goto repeat_schedule;

if (prev == next) goto same_process;
prepare_To_switch ();

stop_active_timers (prev);
start_active_timers (next);

switch (prev,next);

same_process:

if (current->need_resched)

goto need_resched_back;
return;

}

Fig. 5. Pseudo-code for the Linux scheduler.

was interrupted. In this case the interrupted task appears to

be the task that was preempted and not the task to run next.

This means that the virtual timers for the task to be sched-

uled next will continue to measure time, during interrupt

handling. This happens because starting virtual timers and

performing the context switch are not atomic operations.

The results is that the next task to run will include the in-

terrupt time. However, this will not result in, otherwise,

corrupted or incorrect measurements. One way to fix this,

is to make the two operations atomic, e.g. by disabling in-

terrupts. However, since, this is an infrequent case (it has

never occurred in our experiments) we prefer to keep our

implementation simple and not deal with this atomicity is-

sue.

Our virtual timers framework use two main data struc-

tures. The first is general and is used for all tasks running

6

VFS / Ext3
Filesystem Buffer Cache

SR
(Cdroms)

ST
(Tapes)

SD
(Disks)

SCSI Unifying Layer

Hardware
Drivers (iSCSI, ide−scsi)

Pseudo Drivers

NIC(GigEth)

I/O System Calls Kernel Space

Lower

Mid

Upper

SCSI Subsystem

User Space

TCP/IP

Fig. 6. Kernel layers we have instrumented with timers.

in the system. Its elements store information about the ex-

ecution time of all tasks and all timers in the system. This

structure is allocated at system initialization, when the idle

process is created.

The second data structure is private to each task and is

used to implement the virtual-private semantics. The ele-

ments and information are similar to the first, global data

structure. This, second structure is attached to the kernel’s

task struct, which contains all information for each

task. The structure is allocated at the entry point of every

new task in the system, do fork.

Finally, all timing information is available through the

/proc filesystem. The global statistics, i.e. all timers

for all tasks, are accessible through the /proc/ktimers

file, while separate task timings are accessed through

/proc/ktimers "taskid".

IV. RESULTS

In our experiments we use two x86 machines. Each ma-

chine is equipped with two Athlon MP2200 processors at

1.8 GHz and 512 MBytes of RAM. The nodes are con-

nected both with a 100 MBit/s (Intel 82557/8/9 adapter)

and a 1 GBit/s (D-Link DGE550T adapter) Ethernet net-

work. All nodes are connected on a single 24-port Giga-

bit Ethernet switch (D-Link DGS-1024) with a 48 GBit/s

backplane. The 100 MBit network is used only for man-

agement purposes. All traffic related to our storage experi-

ments uses the GBit Ethernet network. The operating sys-

tem we use is Linux RedHat 9.0, with the 2.4.23-

pre5 kernel and our virtual timers extensions. The iSCSI

implementation we use is Intel’s iSCSI [6].

We evaluate our virtual timer framework by profiling

the kernel I/O path for MySQL [12] running the TPC-

H benchmark [11]. Figure 7 shows the system execution

time breakdown of several TPC-H queries. The left bar in

each pair is constructed using Physical-Global timers and

manually subtracting the wait times in the kernel, i.e using

separate timers to measure all wait times. The right bar in

each pair is extracted with using Virtual Private timers to

automatically remove wait times. To understand the vari-

ous sections of each breakdown, Figure 6 shows the kernel

layers for the iSCSI protocol path that have been instru-

mented. Figure 7 illustrates the time spent in each kernel

layer. Time labeled as “other” is time not included in the

layer breakdown we are interested in. “Other” time in-

cludes instrumentation overhead as well. More details on

the results of the iSCSI performance and breakdown can

be found in [13].

In our experience, manually instrumenting the kernel

code to remove wait times and asynchronous events is both

a tedious and error-prone process. Collecting the profiling

data with Physical-Global timer semantics required sev-

eral months and motivated the design and development of

the Virtual-Private timer semantics. With Virtual-Private

timers, we only need to insert start/stop calls at the bound-

aries of each kernel layer shown in Figure 7, which are

fairly easy to identify.

Instrumenting kernel code with our framework incurs

additional overhead in the system. To evaluate this over-

head we measure the time each operation takes. Table I

shows the cost for the four main API functions. The re-

sults show that the overhead of these functions is in all

cases less than 3% of total execution time and on average

1.28%. This allows the framework to profile the system

without significantly affecting the system’s behavior.

V. RELATED WORK

There exist several system profiling tools. We can cate-

gorize them based on the events they are able to profile:

First, system-level tools that profile operating system

events, such as page faults, context switches, network traf-

fic etc. Such tools usually profile course grain events. The

Microsoft Windows System Monitor [10] counts and logs

OS events and hardware resources. Similar statistics are

7

TABLE I

INSTRUMENTATION OVERHEAD. THE FIRST COLUMN SHOWS THE TIME IN CPU CLOCK TICKS FOR A SINGLE OPERATION. THE REST OF THE

COLUMNS SHOW CUMULATIVE TIMES (SECONDS) AS WELL AS INSTRUMENTATION OVERHEAD FOR EACH QUERY. PERCENTAGES REFER TO

TOTAL EXECUTION TIME.

Operation Cost q1 q3 q5 q6 q7 q8 q11 q12 q14 q19
(cycles)

Total Execution Time N/A 85.25 68.27 75.53 27.02 71.32 151.77 29.51 32.16 34.98 34.12
Total System Time N/A 35.36 16.05 16.13 9.52 19.34 42.68 10.07 10.54 10.74 10.19
Total User Time N/A 43.61 37.27 52.66 8.71 39.77 98.17 15.8 10.45 9.1 14.38
Total Idle Time N/A 6.28 14.95 6.74 8.79 12.21 10.92 3.64 11.17 15.14 9.55
Profiling overhead N/A 2.36% 1.03% 1.0% 0.8% 2.0% 1.5% 2.71% 0.7% 0.75% 0.8%
start() 560 1.06% 0.33% 0.37% 0.21% 0.50% 0.71% 1.26% 0.19% 0.19% 0.19%
stop() 1140 1.18% 0.56% 0.51% 0.37% 0.60% 0.80% 1.39% 0.35% 0.34% 0.34%
pseudo start() 485 0.03% 0.04% 0.03% 0.08% 0.04% 0.01% 0.01% 0.07% 0.06% 0.06%
pseudo stop() 1400 0.06% 0.009% 0.07% 0.17% 0.85% 0.04% 0.03% 0.15% 0.14% 0.14%

q1 q3 q5 q6 q7 q8 q1
1

q1
2

q1
4

q1
9

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e %NIC IRQ

%TCP
% iSCSI + SCSI
% FS: Read/Write
% FS: File Mgmt
% Other

(a) Breakdown.

Fig. 7. TPC-H breakdowns. Left bars show breakdown using global-continuous timers with manually removed wait times. Right bars show
breakdown with local-interruptible timers.

exported through the /proc filesystem in Linux and are dis-

played by utilities such as “top” [8]. Such monitoring tools

are intended for system administration and not kernel de-

velopment, which requires kernel code profiling informa-

tion.

Second, code-level tools that profile user or kernel code.

Today, such tools almost exclusively rely in some type

of cycle counter to provide fine-grain measurements: Our

work belongs in this second category. Most of the tools

used in this category are currently based on sampling

methods. Oprofile [3] is a tool that enables OS profiling,

using the symbol sampling techniques to get statistics for

the various symbols that are executed. Oprofile periodi-

cally, and usually at short intervals generates an interrupt

that samples the value of the PC (program counter) reg-

ister in the CPU. Using the PC value and the code sym-

bol information, oprofile determines in which function the

CPU was executing at that time. At the end of the experi-

ment it reports a breakdown of the percentage of execution

time that was spent in each function, based on this method.

VTune [2] is a sampling profiler for x86 systems, both for

Linux and Microsoft Windows. VTune also reports other

CPU events by means of the x86 hardware event counters.

As discussed in Section I, these sampling profilers can

neither provide a detailed breakdown of execution path nor

report the exact time of execution of a kernel function,

since they use approximations based on frequency coun-

ters to get the samples.

8

A user-level profiler that uses processor counters is

PAPI [4] using the Perfctr [5] Linux kernel patch. PAPI has

some similar concepts to the Virtual Timers framework,

but is a user-level application profiler and is designed for

portability over many OSes. PAPI provides an interface to

access the hardware performance counters found on most

modern processors through user-level applications. These

allow application developers to measure hardware or sys-

tem events (e.g. cache hits/misses, TLB misses, ops per

second, etc.) per process or in total for the system. Virtual

Timers on the other hand focuses on kernel-level code pro-

filing and provides primitives for high-accuracy timing of

kernel code-paths.

VI. CONCLUSIONS

In this work we examine a new interface for virtual-

izing physical hardware cycle timers in the kernel. Vir-

tual timers allow the programmer to instrument code-

paths without having to worry about synchronous or asyn-

chronous events that may occur during path execution.

Virtual timers deal automatically with scheduler and in-

terrupt events, excluding all related wait times. We im-

plement a prototype of virtual timers in the Linux kernel.

Using the virtual timer functionality we are able to pro-

vide a breakdown of the kernel I/O overheads for MySQL

running on a system using networked storage over iSCSI.

Using physical timers for extracting code-path measure-

ments is a complex and error-prone process. Virtual timers

greatly reduce the effort required. We also examine the

overhead of our virtual timer instrumentation and we find

that it is always within 3% of the total execution time in

our experiments. Finally, our approach does not replace

sampling profilers, but rather complements them. We have

found that a combination of sampling-based profiling and

our virtual timers is a powerful tool for detailed kernel-

level profiling.

VII. ACKNOWLEDGMENTS

We would like to thank the members of the CARV lab-

oratory at ICS-FORTH for useful discussions. Also, we

thankfully acknowledge the support of the European FP6-

IST program through the SIVSS project.

REFERENCES

[1] http:// www.linux.com / howtos / KernelAnalysis-HOWTO-
6.shtml.

[2] Intel vtune performance analyzers. http:// www.intel.com/ soft-
ware/ products/ vtune.

[3] Oprof: profiling system for linux 2.2/2.4/2.6. http:// opro-
file.sourceforge.net.

[4] Papi: Performance application programming interface. http://
icl.cs.utk.edu/ papi/.

[5] Perfctr: Linux performance counters. http://user.it.uu.se/ mikpe/
linux/ perfctr/.

[6] Project: Intel iSCSI reference implementation.
http://sourceforge.net/ projects/ intel-iscsi.

[7] Scheduling in unix and linux. http:// www.kernelnewbies.org/ doc-
uments / schedule /.

[8] Unix Top. http:// sourceforge.net/ projects/ unixtop.
[9] Internet Engineering Task Force (IETF). iSCSI, version 08. In IP

Storage (IPS), Internet Draft, Document: draft-ietf-ips-iscsi-08.txt,
Sept. 2001.

[10] Microsoft.com. Monitoring and Tuning System Performance in Mi-
crosoft Windows XP. http:// support.microsoft.com/ kb/823887.

[11] Transaction Processing Performance Council (TPC). TPC BENCH-
MARK H, Standard Specification, Revision 2.1.0. 777 N. First
Street, Suite 600, San Jose, CA 95112-6311, USA, August 2003.

[12] Michael Widenius and David Axmark. MySQL Reference Manual.
O’Reilly & Associates, Inc., June 2002.

[13] Dimitrios Xinidis, Michail D. Flouris, and Angelos Bilas. Perfor-
mance Evaluation of Commodity iSCSI-based Storage Systems. In
13th NASA Goddard, IEEE Conference on Mass Storage Systems
and Technologies (MSST2005) (to appear), April 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

