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Abstract

In this paper, we present our vision on building large-scale
storage systems from commodity components in a data center. For
reasons of efficiency and flexibility, we advocate maintaining so-
phisticated data management functions behind a block-based in-
terface. We anticipate that such an interface can be customized to
meet the diverse needs of end-users and applications through the
extensible storage system architecture that we propose.

1. Introduction

Data storage is becoming increasingly important as larger
amounts of data assets need to be stored for archival or online-
processing purposes. Increasing requirements for improving stor-
age efficiency and cost-effectiveness introduce the need for scal-
able storage systems in a data-center, that consolidate system re-
sources into a single system image. Consolidation enables con-
tinuous system operation uninterrupted from device faults, easier
storage management, and ultimately lower cost of purchase and
maintenance.

Our target is primary a data-center environment, where appli-
cation servers and user workstations are able to access the storage
system through potentially different network paths and protocols.
In this environment, although storage consolidation has potential
for lower costs and more efficient storage management, its suc-
cess depends on the ability of the system architecture to face three
main challenges:

1. The first significant challenge is the platform, that is how to
provide system scalability with minimal hardware costs.

2. The second crucial challenge is the software infrastructure re-
quired for (i) virtualizing, (ii) sharing, and (iii) managing the
physical storage in a data center. This includes the virtual-
ization capability to mask applications from each other and
to facilitate storage management tasks. It also includes the

† Also a graduate student at the Department of Computer Science,
University of Toronto, Toronto, Ontario M5S 3G4, Canada.

∗ Also, with the Department of Electronic and Computer Engineer-
ing, Technical University of Crete, Chania, GR 73100, Greece.

‡ Also, with the Department of Computer Science, University of
Crete, P.O. Box 2208, Heraklion, GR 71409, Greece.

significant objective of lowering administration costs through
automated administration. Furthermore, the software infras-
tructure should provide monitoring and dynamic reconfigura-
tion mechanisms to allow the definition and implementation of
high-level quality-of-service policies.

3. Finally, the third challenge is efficient storage sharing between
remote data-centers, enabling global-scale storage distribution.

Next we explore each of these challenges in more detail.

1.1. Scalable, Low-cost Platform

Today, commercial storage systems mostly use expensive custom-
made hardware components and proprietary protocols. We ad-
vocate building scalable low-cost storage systems from storage
clusters composed of common off-the-shelf components. Current
commodity computers and networks have (or will soon have) sig-
nificant computing power and network performance, at a fraction
of the cost of custom storage-specific hardware (controllers or net-
works). Using such components, we can build low-cost storage
clusters with enough capacity and performance to meet practi-
cally any storage needs, and scale it economically. This idea is
not new. It has been proposed and predicted a few years ago by
several researchers and vendors [8, 9]. We think that the necessary
commodity technologies are maturing now with the emergence of
new standards, protocols and interconnects, such as Serial ATA,
PCI-X/Express/AS and iSCSI. For the rest of this discussion, we
assume that the future storage will be based on clusters built of
commodity PCs (e.g. x86, SATA disks) and commodity intercon-
nects (e.g. gigabit Ethernet, PCI-Express/AS ) accessible through
standard protocols (e.g. SCSI).

A commodity PC with PCI-X or PCI-Express can currently
accommodate at least 2 TBytes of storage using commodity I/O
controllers with 8 or 16 disks SATA disks each. The PCI-X bus
can support aggregate throughput in excess of 800 MBytes/sec to
the disks, while gigabit Ethernet NICs and switches are an inex-
pensive means for interconnecting the storage nodes. The nodes
can also run an existing high-performance operating system such
as Linux or FreeBSD for a very low cost. Similarly, intercon-
nect technology that will allow efficient scaling is currently being
developed (e.g. PCI-Express/AS). Thus, we assume that the com-
modity components to build such storage platform are or will be
available at a low cost. We believe that the next missing com-
ponent for building cost-effective storage systems is addressing
challenge 2. This will provide the software infrastructure that
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will run on top, integrating storage resources into a system that
provides flexibility, sharing, and automated management. This is
the main motivation for our work.

1.2. Software Infrastructure

A consolidated storage system requires increased flexibility to
serve multiple applications and satisfy diverse needs in both stor-
age management and data access. Moreover, as we accumulate
massive amounts of storage resources behind a single system
image, the automation of the administration tasks becomes cru-
cial for sustaining efficient and cost-effective operation. Contin-
uous unobtrusive measurement of the device efficiency and the
user-perceived performance should drive data reorganization and
device reconfiguration towards load-balanced system operation.
Finally, policy-based data administration should meet preagreed
performance objectives for individual applications. These are the
challenges for the software infrastructure in a data center. We
argue that such requirements can be satisfied through a virtualiza-
tion infrastructure.

The term “virtualization” has been used to describe mainly two
concepts: indirection and sharing. The first refers to the addition
of an indirection layer between the physical resources and the log-
ical devices accessed by the applications. Such a layer allows ad-
ministrators to create and applications to access various types of
virtual volumes that are mapped to physical devices, while offer-
ing higher-level semantics through multiple layers of mappings.
This kind of virtualization has several advantages: (i) It enables a
lot of useful management and reconfiguration operations, such as
non-disruptive data reorganization and migration during the sys-
tem operation. (ii) It adds flexibility to the system configuration,
since physical storage space can be arbitrarily mapped to virtual
volumes. For example a virtual volume can be defined as any
combination of basic operators, such as aggregation, partition-
ing, striping or mirroring. (iii) It allows implementation of useful
functionality, such as fault-tolerance with RAID levels, backup
with volume snapshots or encryption with encryption data filters.
(iv) It allows extensibility, the addition of new functionality in
the system. This is achieved by implementing new virtualiza-
tion modules with the desired functions and incrementally adding
them to the system.

Currently, the “indirection” virtualization mechanisms of most
storage systems and products [11, 13, 14] mostly support a set of
predefined functions and leave freedom to the administrator in
the way of combining them. That is, they provide configuration
flexibility, but very little functional flexibility. For example prede-
fined virtualization semantics include virtual volumes mapped to
an aggregation of disks or RAID levels. In this category belong
both research prototypes of volume managers [2, 5, 7, 12, 19] as
well as commercial products [3, 4, 10, 21, 22]. In all these cases
the storage administrator can switch on or off various features
at the volume level. However, there is no support for extend-
ing the I/O protocol stack by providing new functionality, such as
snapshots, encryption, compression, virus-scanning, application-
specific data placement or content hash computation. Moreover,
it is not possible to combine such new functions in a flexible man-
ner.

The second notion of virtualization refers to the ability of shar-
ing the storage resources across many nodes and multiple applica-
tions without compromising the performance of each application

in any significant way. Even though some vendors claim that they
can support such sharing, efficient virtualization remains an elu-
sive target in large-scale systems, because of the software com-
plexity. Maintaining consistency is complex and usually intro-
duces significant overheads in the system.

1.3. Global-scale Sharing

In this area issues include interoperability, hiding network laten-
cies and achieving high throughput in networks with large delay-
bandwidth products. We consider this area out of the scope of
our work, but we believe that the virtualization infrastructure we
propose facilitates global storage connectivity and interoperabil-
ity between data centers.

The rest of this paper is organized as follows. Section 2
presents our position on virtualization issues, while Section 3 dis-
cusses our approach to block-level virtualization. Finally, Section
4 discusses related work and Section 5 draws our conclusions.

2. Our Approach

Our goal in this work is to address the software infrastructure
challenges, by exploring storage virtualization solutions. The
term virtualization is used here to signify both an indirection layer
between physical resources and virtual volume, and resource shar-
ing. Next we describe the directions we have taken in our ap-
proach.

2.1. Block-level functionality

We advocate block-level virtualization (we use the indirection
notion here), as opposed to file-level virtualization for the fol-
lowing reasons. First, certain functionality, such as compres-
sion or encryption, may be simpler and more efficient to provide
on unstructured fixed data blocks rather than variable-size files.
Second, storage hardware at the back-end has evolved signifi-
cantly from simple disks and fixed controllers to powerful stor-
age nodes [1, 8, 9] that offer block-level storage to multiple ap-
plications over a storage area network [16, 17]. Block-level vir-
tualization modules can exploit the processing capacity of these
storage nodes, where filesystems (running mainly on the applica-
tion servers and the clients) cannot. Third, storage management
(e.g. migrating data, backup, redundancy) at the block-level is
less complex to implement and easier to administer, because of
the unstructured form of data blocks. For these reasons and over
time, with the evolution of storage technology a number of vir-
tualization features, e.g. volume management functions, RAID,
snapshots, moved from higher system layers to the block level.

With the traditional file vs. block abstractions, intelligent con-
trol functions remain at higher-level abstractions such as filesys-
tems or databases running at the front-end to support application
servers and client workstations. In this manner, all the process-
ing power of the storage hardware has to be hidden behind virtual
disks for transparency reasons. This imbalance that favors the
front-end control leaves underutilized the hardware capabilities of
the back-end. On the other hand, offloading functionality to the
back-end could free up the processor at the front-end to actually
run application code instead of filesystem functions. The concept
is similar to using DMA and smart hardware to relieve the main
processor from performing memory transfers between the main
memory and the hardware on the bus (e.g. a RAID controller on
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Figure 1. Violin in the OS.

the PCI). Similarly, we could offload processing and data trans-
fers to the storage back-end. For example, instead of the client
filesystem moving data over the network in order to copy a file,
it could instruct the back-end to perform the copy locally at the
level of data blocks. Thus, we could improve the performance of
individual applications and the entire system.

By using block-level virtualization we have to restrict our sys-
tem to the traditional block-level interface. A higher API, such as
objects, may be better in this case and we are considering it for
the future. However, we currently aim to explore the limits of the
block-level API before dealing with higher abstractions.

3. Block-level Virtualization

Our work addresses block level virtualization, both for indirection
and for sharing purposes. In this section we present our approach
for both notions in more detail.

3.1. Indirection Virtualization

3.1.1. Single-storage-node Virtualization As a building
block towards a distributed storage system with flexible and ef-
ficient virtualization support, we have designed and implemented
Violin [6]. Violin (Virtual I/O Layer INtegrator), is a kernel-level
framework for (i) building and (ii) combining block-level virtual-
ization functions. Violin is a virtual I/O framework for commod-
ity storage nodes that replaces the current block-level I/O stack
with an improved I/O hierarchy that allows for (i) easy exten-
sion of the virtual storage hierarchy with new mechanisms and
(ii) flexible combination of these mechanisms to create modular
hierarchies with rich semantics. Figure 1 illustrates a high-level
view of Violin in the operating system context.

The main contributions of Violin are: (i) it significantly re-
duces the effort of introducing new functionality in the block
I/O stack of a single storage node and (ii) provides ample con-
figuration flexibility to combine simple virtualization operators
into hierarchies with semantics that can satisfy diverse applica-
tion needs. To achieve configuration flexibility, Violin allows
storage administrators to create arbitrary, acyclic graphs of vir-
tual devices, each adding to the functionality of the successor de-
vices in the graph. Figure 2 shows such a device graph, where
mappings between higher and lower devices are represented by
arrows. Every virtual device’s functionality is provided by inde-
pendent virtualization modules that are linked to the main Violin
framework. A linked device graph is called a hierarchy and rep-
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Figure 2. The virtual device graph in Violin.

resents practically a virtualization layer stack. In each hierarchy,
blocks of each virtual device can be mapped in arbitrary ways to
the successor devices, enabling advanced storage functions, such
as dynamic relocation of blocks.

Violin also provides virtual devices with full access to both
the request and completion paths of I/Os allowing for easy im-
plementation of synchronous and asynchronous I/O. Supporting
asynchronous I/O is important for performance reasons, but also
raises significant challenges when implemented in real systems.
Additionally, Violin deals with metadata persistence of the full
storage hierarchy, offloading the related complexity from individ-
ual virtual devices. It supports persistent objects for storing virtual
device metadata. Violin automatically synchronizes persistent ob-
jects to stable storage, resulting in much less effort for the module
developer.

Systems such as Violin can be combined with standard storage
access protocols, such as iSCSI to build large-scale distributed
volumes. Figure 3 shows a system with multiple storage nodes
that provide a common view of the physical storage in a clus-
ter. We believe that future, large-scale storage systems will be
built in this manner to satisfy application needs at a cost-effective
manner. We have implemented Violin as a block device driver
under Linux. To demonstrate the effectiveness of our approach in
extending the I/O hierarchy we implemented various virtual mod-
ules as dynamically loadable kernel devices that bind to Violin’s
API. We also provide simple user level tools that are able to per-
form on-line fine-grain configuration, control, and monitoring of
arbitrary hierarchies of instances of these modules.

In [6], we evaluate the effectiveness of our approach in three
areas: ease of module development, configuration flexibility, and
performance. In the first area we are able to quickly prototype
modules for RAID levels (0, 1 & 5), versioning, partitioning, ag-
gregation, MD5 hashing, migration and encryption. Further ex-
amples of useful functionality that can be implemented as mod-
ules include all kinds of encryption algorithms, storage virus-
scanning modules, online migration and transparent disk layout
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Figure 3. Violin in a distributed environment.

algorithms (e.g. log-structured allocation or cylinder group place-
ment). In many cases, writing a new module is just a matter of
recompiling existing user-level library code. Overall, using Vi-
olin encourages the development of simple virtual modules that
can later be combined to more complex hierarchies. Regarding
configuration flexibility, we are able to easily configure I/O hi-
erarchies that combine the functionality of multiple layers and
provide complex high-level semantics that are difficult to achieve
otherwise. Finally, we use Postmark and IOmeter to examine the
overhead that Violin introduces over traditional block-level I/O
hierarchies. We find that overall, internal modules perform within
10% (throughput) of their native Linux block-driver counterparts.

3.1.2. Multi-storage-node Virtualization Our step towards a
scalable virtualization platform is to enhance the Violin frame-
work with the necessary primitives in order to allow multi-node
hierarchies. We find that the primitives required to achieve this
are two: (i) locking of layer metadata, and (ii) control messaging
through the distributed I/O stack.

The single-node Violin I/O stack allows the creation of multi-
layered storage volumes. These are exported to other storage
nodes through block-level network protocols, such as iSCSI. The
nodes can further build I/O stacks on top of the remote storage
volumes, creating higher-level volumes as needed. This organi-
zation is depicted in Figure 3. We find that data I/O requests are
correctly forwarded by the layers through this distributed hierar-
chy by the layers distributed to different nodes. Reliability is-
sues regarding node or device failures are effectively handled by
fault-tolerance layers (e.g. RAID levels) that map storage vol-
umes between nodes or devices. The system can thus tolerate
storage node failures as a RAID system tolerates device failures.
A remaining issue with layer distribution is related to the consis-
tency of layer metadata: since a layer can be distributed to two or
more nodes (i.e. every node runs a separate instance of the layer
on the same volume), in order to maintain the layer metadata con-
sistent between nodes, each layer has to synchronize its metadata
to the storage volume in every metadata operation. Since this can
be very expensive in terms of performance, the system is able to
minimize the overhead by supporting metadata locking for layers.
Thus, the metadata can be locked and updated asynchronously.

A second issue with distributing the virtualization hierarchy is
effectively passing control messages to layers both downstream
(from a high layer to a lower one) and upstream (from a lower
layer to a high one). Storage network protocols such as iSCSI
offer some support for transferring control commands between
remote volumes through SCBs (or SCSI command blocks), but
they are always towards the downstream direction. We propose
more generic and flexible support for control message transfers
through the distributed I/O stack. To maintain compatibility with
current standards (e.g. iSCSI), we advocate using the common

data I/O mechanisms combined with virtualization layers to han-
dle control messages. One approach we are considering for the
downstream direction is defining special virtual block addresses
in each volume, where the usual I/O operations would be trans-
lated to control messages. For the upstream direction we consider
other options, such as ticket callbacks from higher to lower layers.
The upstream direction, however, is currently considered future
work.

3.2. Sharing Virtualization

The second notion of virtualization concerns storage sharing.
Sharing is required at two levels, either at the block level where
storage volumes are shared, or at the file level, where applications
share files.

3.2.1. Shared Block-level Access Many block-level applica-
tions, such as databases, web caches or video servers using raw
disk access, must share concurrent access to volumes in a consol-
idated storage system. Thus, we need to support concurrent vol-
ume sharing. We find that a single primitive is required for this
purpose: locking support of data block address ranges on the vol-
umes. Using such locks, applications can synchronize accesses to
shared blocks on the volume.

We have designed and we are currently implementing this fea-
ture in Violin, as a virtualization module. The “locking” layer
captures lock commands and generates distributed control com-
mands in Violin. These commands are forwarded through the
virtualization hierarchy to special “lock server” modules, which
serialize and enforce the locks. Lock commands are extensions to
the block API but are compatible to the ioctl device interface of
most operating systems. Also the SCSI interface supports custom
“command blocks” that can transfer such commands.

3.2.2. Shared File Access Violin achieves shared block-level
access and layer distribution within the storage cluster. However
the most common API of accessing storage is through the file
interface, which we can offer with a filesystem on top of a Vio-
lin shared block volume. Our goal for the filesystem implemen-
tation is that the filesystem itself should be as simple as possi-
ble, while independent functionality should be moved at the stor-
age back-end. Our approach to the filesystem design is similar
to Frangipani [20], where many independent filesystem instances
run on a single shared block volume without direct communica-
tion among the instances themselves. The filesystem instances
share the blocks of the volume as any other block-level applica-
tion, using locks on the volume’s blocks to maintain consistency
for the filesystem metadata. This organization initially simplifies
the filesystem design. However, in contrast to previous work, our
goal is to simplify filesystem design and implementation by re-
considering the division of functionality between the filesystem
and the block-level layer.

We find that the block-level layer can be enhanced with three
types of support: (a) block allocation, (b) block-range locking,
and (c) metadata consistency. The free block allocation and the
lock service greatly reduce the filesystem complexity in compar-
ison to other distributed filesystems. The filesystem code is only
aware of a large shared volume and is not aware of other instances
running on it. It simply locks the blocks it needs for atomic meta-
data updates, and uses the free block allocation commands to al-
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locate or free data blocks on the shared volume. These extensions
allow us to build a simple pass-through filesystem that provides
only naming and file-level access rights.

4. Related Work

Storage Tank (ST) is a scalable distributed file and storage man-
agement system running on heterogeneous machines over storage
area networks [14]. It offers virtualization and centralized policy-
based management of storage resources. It separates data stor-
age from metadata management and enables clients to access data
directly for improved scalable performance. Although we share
several goals with ST, the main difference of our system is its
design approach that aims at pushing significant storage system
functionality behind the block-based interface. A second differ-
ence is the versatility of our system to serve diverse application
needs through our extensible design. Another difference is the
architecture of our distributed filesystem. Our FS is based on in-
dependent instances operating on a shared block volume, simi-
lar to Frangipani [20]. On the other hand, the ST filesystem has
metadata servers, uses many disk volumes and each FS instance
is aware of the others and directly cooperates with them.

Object-based storage advocates that the traditional block-
based interface of storage devices should be changed to directly
support management of objects [15]. Although blocks offer fast
scalable access to shared data, a file server is currently needed to
authorize the I/O and maintain the metadata at the cost of lim-
ited security and data sharing. Support for data objects essentially
moves to the storage devices issues of internal space management,
quality-of-service guarantees and access authorization. Although
decentralized storage management is one of our goals, we aim at
supporting metadata management on top of commodity devices
rather than modifying their hardware interface. Additionally, we
strive to hide storage management functions behind the block-
based interface whenever possible.

Cluster filesystems such as GPFS offer shared access to dis-
tributed homogeneous resources [18]. Metadata management
is distributed across multiple file server nodes, and shared data
can be accessed in parallel from different storage devices. Even
though cluster filesystems successfully manage storage space in
data centers, their design is monolithic and non-extensible. Fur-
thermore, such systems offer little flexibility in reorganizing data
or reconfiguring devices, making administration tasks tedious.

Stackable filesystems facilitate file system development
through incremental refinement of features and extensible inter-
faces [23]. In the present paper, we advocate our approach on
using software modularity and extensibility in building sophis-
ticated storage system functionality while preserving the block-
based interface. In essence, our approach is complementary to
the stackable filesystem design since we target different layers of
the data storage hierarchy.

5. Conclusions

In this paper we identify two main challenges for consolidated
storage in a data center: (i) the scalable, low-cost platform issue
and (ii) the software infrastructure issue. Our goal is to address
the latter. We propose a virtualization infrastructure to tackle the
storage management, flexibility and reconfiguration issues. We
have designed and implemented Violin, a virtualization frame-

work for (i) building and (ii) combining block-level virtualization
functions. We have also designed and are currently implement-
ing extensions that will allow distributed virtualization stacks and
sharing at both the block and the file level.
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